Sustained xanthophyll pigments-related photoprotective NPQ is involved in photoinhibition in the haptophyte Tisochrysis lutea

Author:

Lacour T.,Robert E.,Lavaud J.

Abstract

AbstractDynamic xanthophyll cycle (XC) related non-photochemical quenching (NPQd, also called qE) is present in most phototrophs. It allows dissipating excess light energy under adverse growing conditions. Generally, NPQd rapidly reverses for photosynthesis to resume when light intensity decreases back toward optimal intensity. Under certain environmental conditions and/or in some species, NPQ can be strongly sustained (NPQs showing hours-to-days relaxation kinetics). Tisochrysis lutea is a South Pacific haptophyte phytoplankton with a strong potential for aquaculture and biotechnology applications. It was previously reported to show a surprisingly low NPQd capacity while synthesizing large amounts of diatoxanthin (Dt), a pigment involved in the XC. In order to better understand this paradox, we investigated the characteristics of NPQ in T. lutea under various growth conditions of light and nutrient availability (different photoperiods, low and high light, nutrient starvations). We found a strong NPQs, unmeasurable with usual fluorometry protocols. Along with confirming the involvement of Dt in both NPQd and NPQs (by using the dithiothreitol inhibitor), we highlighted a strong relationship between Dt and the maximum quantum yield of photochemistry (Fv/Fm) across growing conditions and during relaxation experiments in darkness. It suggests that changes in Fv/Fm, usually attributed to the ‘photoinhibitory’ quenching (qI), are simultaneously largely impacted by photoprotective NPQ. The overlap of xanthophyll pigments-related photoprotective NPQ with several other mechanisms involved in the cell response (Photosystem II photoinactivation, changes in pigments composition, and detoxification by antioxidants) to energy unbalance is further discussed. Our findings question both how widespread NPQs is in the global ocean, particularly in nutrient starved environments (oligotrophic waters) and situations (post-bloom), and the use of adapted active fluorescence protocols (i.e. with extended NPQ relaxation period prior to measurement).

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3