Tag-free indoor fall detection using transformer network encoder and data fusion

Author:

Khan Muhammad Zakir,Usman Muhammad,Ahmad Jawad,Rahman Muhammad Mahboob Ur,Abbas Hasan,Imran Muhammad,Abbasi Qammer H.

Abstract

AbstractThis work presents a radio frequency identification (RFID)-based technique to detect falls in the elderly. The proposed RFID-based approach offers a practical and efficient alternative to wearables, which can be uncomfortable to wear and may negatively impact user experience. The system utilises strategically positioned passive ultra-high frequency (UHF) tag array, enabling unobtrusive monitoring of elderly individuals. This contactless solution queries battery-less tag and processes the received signal strength indicator (RSSI) and phase data. Leveraging the powerful data-fitting capabilities of a transformer model to take raw RSSI and phase data as input with minimal preprocessing, combined with data fusion, it significantly improves activity recognition and fall detection accuracy, achieving an average rate exceeding $$96.5\%$$ 96.5 % . This performance surpasses existing methods such as convolutional neural network (CNN), recurrent neural network (RNN), and long short-term memory (LSTM), demonstrating its reliability and potential for practical implementation. Additionally, the system maintains good accuracy beyond a 3-m range using minimal battery-less UHF tags and a single antenna, enhancing its practicality and cost-effectiveness.

Funder

Engineering and Physical Sciences Research Council

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3