Machine learning model for predicting ciprofloxacin resistance and presence of ESBL in patients with UTI in the ED

Author:

Lee Hyun-Gyu,Seo Youngho,Kim Ji Hye,Han Seung Baik,Im Jae Hyoung,Jung Chai Young,Durey Areum

Abstract

AbstractIncreasing antimicrobial resistance in uropathogens is a clinical challenge to emergency physicians as antibiotics should be selected before an infecting pathogen or its antibiotic resistance profile is confirmed. We created a predictive model for antibiotic resistance of uropathogens, using machine learning (ML) algorithms. This single-center retrospective study evaluated patients diagnosed with urinary tract infection (UTI) in the emergency department (ED) between January 2020 and June 2021. Thirty-nine variables were used to train the model to predict resistance to ciprofloxacin and the presence of urinary pathogens’ extended-spectrum beta-lactamases. The model was built with Gradient-Boosted Decision Tree (GBDT) with performance evaluation. Also, we visualized feature importance using SHapely Additive exPlanations. After two-step customization of threshold adjustment and feature selection, the final model was compared with that of the original prescribers in the emergency department (ED) according to the ineffectiveness of the antibiotic selected. The probability of using ineffective antibiotics in the ED was significantly lowered by 20% in our GBDT model through customization of the decision threshold. Moreover, we could narrow the number of predictors down to twenty and five variables with high importance while maintaining similar model performance. An ML model is potentially useful for predicting antibiotic resistance improving the effectiveness of empirical antimicrobial treatment in patients with UTI in the ED. The model could be a point-of-care decision support tool to guide clinicians toward individualized antibiotic prescriptions.

Funder

Korea Institute of Science and Technology Information

Inha University

Inha University Hospital

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3