Multi-resolution convolutional neural networks for inverse problems

Author:

Wang Feng,Eljarrat Alberto,Müller Johannes,Henninen Trond R.,Erni Rolf,Koch Christoph T.

Abstract

AbstractInverse problems in image processing, phase imaging, and computer vision often share the same structure of mapping input image(s) to output image(s) but are usually solved by different application-specific algorithms. Deep convolutional neural networks have shown great potential for highly variable tasks across many image-based domains, but sometimes can be challenging to train due to their internal non-linearity. We propose a novel, fast-converging neural network architecture capable of solving generic image(s)-to-image(s) inverse problems relevant to a diverse set of domains. We show this approach is useful in recovering wavefronts from direct intensity measurements, imaging objects from diffusely reflected images, and denoising scanning transmission electron microscopy images, just by using different training datasets. These successful applications demonstrate the proposed network to be an ideal candidate solving general inverse problems falling into the category of image(s)-to-image(s) translation.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Localization and segmentation of atomic columns in supported nanoparticles for fast scanning transmission electron microscopy;npj Computational Materials;2024-08-03

2. Roadmap on data-centric materials science;Modelling and Simulation in Materials Science and Engineering;2024-07-03

3. MAgNET: A graph U-Net architecture for mesh-based simulations;Engineering Applications of Artificial Intelligence;2024-07

4. Inv-ReVersion: Enhanced Relation Inversion Based on Text-to-Image Diffusion Models;Applied Sciences;2024-04-15

5. Vehicle load identification based on bridge response using deep convolutional neural network;Journal of Asian Architecture and Building Engineering;2024-03-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3