Abstract
AbstractPlatelets are anucleate blood cells with reported roles in hemostasis and immune responses, which possess a functional receptor for bacterial lipopolysaccharides (LPSs), the well-known inducers of inflammation. However, LPSs effects on platelets are contradictory. Here we aim to investigate mechanisms of platelet functioning in the presence of LPS and to find the cause of the discrepancy in the previously published data. Cell activity was analyzed by flow cytometry, western blotting, and aggregometry. Thrombus growth was assessed by fluorescent microscopy. LPS' activity was checked by their capability to induce PMN activation. However, LPSs did not substantially affect either thrombus growth in flow chambers, irreversible platelet aggregation, or platelet responses to strong activation. Platelet aggregation in response to 1 μM of ADP was significantly inhibited by LPSs. Flow cytometry analysis revealed that platelet activation responses to weak stimulation were also diminished by LPSs, while VASP phosphorylation was weakly increased. Additionally, LPSs were capable of inhibition of ADP-induced P2-receptor desensitization. Incubation of platelets with a pan-PDE inhibitor IBMX significantly enhanced the LPSs-induced platelet inhibition, implying cAMP/cGMP dependent mechanism. The discrepancy in the previously published data could be explained by LPS-induced weak inhibition of platelet activation and the prevention of platelet desensitization.
Funder
Council on Grants of the President of the Russian Federation
Russian Foundation for Basic Research
Publisher
Springer Science and Business Media LLC
Reference51 articles.
1. Erridge, C., Bennett-Guerrero, E. & Poxton, I. R. Structure and function of lipopolysaccharides. Microbes Infect. 4, 837–851 (2002).
2. Lu, Y.-C., Yeh, W.-C. & Ohashi, P. S. LPS/TLR4 signal transduction pathway. Cytokine 42, 145–151 (2008).
3. Asakura, H. et al. Pathophysiology of disseminated intravascular coagulation (DIC) progresses at a different rate in tissue factor-induced and lipopolysaccharide-induced DIC models in rats. Blood Coagulat. Fibrinol. Int. J. Haemost. Thrombos. 14, 221–228 (2003).
4. Vaure, C. & Liu, Y. A comparative review of toll-like receptor 4 expression and functionality in different animal species. Front. Immunol. 5, 316 (2014).
5. Claushuis, T. A. M. et al. Platelet Toll-like receptor expression and activation induced by lipopolysaccharide and sepsis. Platelets https://doi.org/10.1080/09537104.2018.1445841 (2018).
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献