Millennial scale maximum intensities of typhoon and storm wave in the northwestern Pacific Ocean inferred from storm deposited reef boulders

Author:

Minamidate Kenta,Goto Kazuhisa,Watanabe Masashi,Roeber Volker,Toguchi Ken,Sannoh Masami,Nakashima Yosuke,Kan Hironobu

Abstract

AbstractTyphoons and associated storm waves in the northwestern Pacific Ocean commonly cause coastal disasters. The possibility remains that an even stronger typhoon than the strongest one observed to date might have occurred before. The development of a method to estimate a maximum intensity of past typhoons over thousands of years is important for paleoclimatology, paleoceanography and disaster prevention. Numerous storm wave boulders exist on reefs in the Ryukyu Islands, Japan, which have been deposited to their present position by the cumulative effects of the past storm waves. These boulders can be used as proxies for the hydrodynamic conditions of the largest waves from past events. Here, we present numerical computations for storm waves and boulder transport with the boulder distribution as a constraint factor to estimate the maximum intensities of storm waves and their causative typhoon events over the past 3500 years. Though the intensities of the maximum estimated waves and associated typhoon events were slightly stronger than those recorded over the past ~70 years in the Ryukyu Islands, our results suggest that no abnormally intense typhoon has struck the Ryukyu Islands in the past 3500 years. The potential impact from tsunamis remains uncertain; however, our results are meteorologically reasonable.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3