Author:
Tang Guo,Jiang Zhen,Xu Lingjie,Yang Ying,Yang Sha,Yao Rong
Abstract
AbstractThis study aimed to develop and validate a predictive model to determine the risk of in-hospital mortality in patients with acute paraquat poisoning. This retrospective observational cohort study included 724 patients with acute paraquat poisoning whose clinical data were collected within 24 h of admission. The primary outcome was in-hospital mortality. Patients were randomly divided into training and validation cohorts (7/3 ratio). In the training cohort, the least absolute shrinkage and selection operator regression models were used for data dimension reduction and feature selection. Multivariate logistic regression was used to generate a predictive nomogram for in-hospital mortality. The prediction model was assessed for both the training and validation cohorts. In the training cohort, decreased level of consciousness (Glasgow Coma Scale score < 15), neutrophil-to-lymphocyte ratio, alanine aminotransferase, creatinine, carbon dioxide combining power, and paraquat plasma concentrations at admission were identified as independent predictors of in-hospital mortality in patients with acute paraquat poisoning. The calibration curves, decision curve analysis, and clinical impact curves indicated that the model had a good predictive performance. It can be used on admission to the emergency department to predict mortality and facilitate early risk stratification and actionable measures in clinical practice after further external validation.
Funder
the Science and Technology Department of Sichuan Province
the National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献