Power quality approximation for household equipment load combinations using a stepwise growth in input parameters of AI models

Author:

Zjavka Ladislav

Abstract

AbstractDetached off-grids, subject to the generated renewable energy (RE), need to balance and compensate the unstable power supply dependent on local source potential. Power quality (PQ) is a set of EU standards that state acceptable deviations in the parameters of electrical power systems to guarantee their operability without dropout. Optimization of the estimated PQ parameters in a day-horizon is essential in the operational planning of autonomous smart grids, which accommodate the norms for the specific equipment and user demands to avoid malfunctions. PQ data for all system states are not available for dozens of connected / switched on household appliances, defined by their binary load series only, as the number of combinations grows exponentially. The load characteristics and eventual RE contingent supply can result in system instability and unacceptable PQ events. Models, evolved by Artificial Intelligence (AI) methods using self-optimization algorithms, can estimate unknown cases and states in autonomous systems contingent on self-supply of RE power related to chaotic and intermitted local weather sources. A new multilevel extension procedure designed to incrementally improve the applicability and adaptability to training data. The initial AI model starts with binary load series only, which are insufficient to represent complex data patterns. The input vector is progressively extended with correlated PQ parameters at the next estimation level to better represent the active demand of the power consumer. Historical data sets comprise training samples for all PQ parameters, but only the load sequences of the switch-on appliances are available in the next estimation states. The most valuable PQ parameters are selected and estimated in the previous algorithm stages to be used as supplementary series in the next more precise computing. More complex models, using the previous PQ-data approximates, are formed at the secondary processing levels to estimate the target PQ-output in better quality. The new added input parameters allow us to evolve a more convenient model form. The proposed multilevel refinement algorithm can be generally applied in modelling of unknown sequence states of dynamical systems, initially described by binary series or other insufficient limited-data variables, which are inadequate in a problem representation. Most AI computing techniques can adapt this strategy to improve their adaptive learning and model performance.

Funder

Parallel processing of Big Data IX

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3