Global stability and bifurcations in a mathematical model for the waste plastic management in the ocean

Author:

Parsamanesh Mahmood,Izadi Mohammad

Abstract

AbstractThe use of plastic is very widespread in the world and the spread of plastic waste has also reached the oceans. Observing marine debris is a serious threat to the management system of this pollution. Because it takes years to recycle the current wastes, while their amount increases every day. The importance of mathematical models for plastic waste management is that it provides a framework for understanding the dynamics of this waste in the ocean and helps to identify effective strategies for its management. A mathematical model consisting of three compartments plastic waste, marine debris, and recycle is studied in the form of a system of ordinary differential equations. After describing the formulation of the model, some properties of the model are given. Then the equilibria of the model and the basic reproduction number are obtained by the next generation matrix method. In addition, the global stability of the model are proved at the equilibria. The bifurcations of the model and sensitivity analysis are also used for better understanding of the dynamics of the model. Finally, the numerical simulations of discussed models are given and the model is examined in several aspects. It is proven that the solutions of the system are positive if initial values are positive. It is shown that there are two equilibria $$E^0$$ E 0 and $$E^*$$ E and if $${{\mathcal {B}}}{{\mathcal {R}}}<1$$ B R < 1 , it is proven that $$E^0$$ E 0 is globally stable, while when $${{\mathcal {B}}}{{\mathcal {R}}}>1$$ B R > 1 , the equilibrium $$E^*$$ E exists and it is globally stable. Also, at $${{\mathcal {B}}}{{\mathcal {R}}}=1$$ B R = 1 the model exhibits a forward bifurcation. The sensitivity analysis of $${{\mathcal {B}}}{{\mathcal {R}}}$$ B R concludes that the rates of waste to marine, new waste, and the recycle rate have most effect on the amount of marine debris.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3