Engineered human organ-specific urethra as a functional substitute

Author:

Caneparo Christophe,Chabaud Stéphane,Fradette Julie,Bolduc Stéphane

Abstract

AbstractUrologic patients may be affected by pathologies requiring surgical reconstruction to re-establish a normal function. The lack of autologous tissues to reconstruct the urethra led clinicians toward new solutions, such as tissue engineering. Tridimensional tissues were produced and characterized from a clinical perspective. The balance was optimized between increasing the mechanical resistance of urethral-engineered tissue and preserving the urothelium’s barrier function, essential to avoid urine extravasation and subsequent inflammation and fibrosis. The substitutes produced using a mix of vesical (VF) and dermal fibroblasts (DF) in either 90%:10% or 80%:20% showed mechanical resistance values comparable to human native bladder tissue while maintaining functionality. The presence of mature urothelium markers such as uroplakins and tight junctions were documented. All substitutes showed similar histological features except for the noticeable decrease in polysaccharide globules for the substitutes made with a higher proportion of DF. The degree of maturation evaluated with electron microscopy was positively correlated with the increased concentration of VF in the stroma. Substitutes produced with VF and at least 10% of DF showed sufficient mechanical resistance to withstand surgeon manipulation and high functionality, which may improve long-term patients’ quality of life, representing a great future alternative to current treatments.

Funder

Fonds de Recherche du Québec - Santé

Canadian Institutes of Health Research

Canadian Urological Association

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3