Power spectrum and critical exponents in the 2D stochastic Wilson–Cowan model

Author:

Apicella I.,Scarpetta S.,de Arcangelis L.,Sarracino A.,de Candia A.

Abstract

AbstractThe power spectrum of brain activity is composed by peaks at characteristic frequencies superimposed to a background that decays as a power law of the frequency, $$f^{-\beta }$$ f - β , with an exponent $$\beta $$ β close to 1 (pink noise). This exponent is predicted to be connected with the exponent $$\gamma $$ γ related to the scaling of the average size with the duration of avalanches of activity. “Mean field” models of neural dynamics predict exponents $$\beta $$ β and $$\gamma $$ γ equal or near 2 at criticality (brown noise), including the simple branching model and the fully-connected stochastic Wilson–Cowan model. We here show that a 2D version of the stochastic Wilson–Cowan model, where neuron connections decay exponentially with the distance, is characterized by exponents $$\beta $$ β and $$\gamma $$ γ markedly different from those of mean field, respectively around 1 and 1.3. The exponents $$\alpha $$ α and $$\tau $$ τ of avalanche size and duration distributions, equal to 1.5 and 2 in mean field, decrease respectively to $$1.29\pm 0.01$$ 1.29 ± 0.01 and $$1.37\pm 0.01$$ 1.37 ± 0.01 . This seems to suggest the possibility of a different universality class for the model in finite dimension.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3