Light source optimization for partially coherent holographic displays with consideration of speckle contrast, resolution, and depth of field

Author:

Lee Seungjae,Kim Dongyeon,Nam Seung-Woo,Lee Byounghyo,Cho Jaebum,Lee Byoungho

Abstract

Abstract Speckle reduction is an important topic in holographic displays as speckles not only reduce signal-to-noise ratio but also possess an eye-safety issue. Despite thorough exploration of speckle reduction methods using partially coherent light sources, the trade-off involved by the partial coherence has not been thoroughly discussed. Here, we introduce theoretical models that quantify the effects of partial coherence on the resolution and the speckle contrast. The theoretical models allow us to find an optimal light source that maximizes the speckle reduction while minimizing the decline of the other terms. We implement benchtop prototypes of partially coherent holographic displays using the optimal light source, and verify the theoretical models via simulation and experiment. We also present a criterion to evaluate the depth of field in partially coherent holographic displays. We conclude with a discussion about approximations and limitations inherent in the theoretical models.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Large-depth-range holographic display system with accurate depth sensitivity;Optics & Laser Technology;2024-07

2. Multisource Holography;ACM Transactions on Graphics;2023-12-05

3. Speckle control for electro-holographic display using high-brightness yellow phosphor light source in projector;Optical Engineering;2023-08-25

4. HoloBeam: Paper-Thin Near-Eye Displays;2023 IEEE Conference Virtual Reality and 3D User Interfaces (VR);2023-03

5. Weighted constraint stochastic gradient descent algorithm for computational holographic near-eye display;Holography, Diffractive Optics, and Applications XII;2022-12-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3