An explicit time-domain method for non-stationary random analysis of nonlinear frame structures with plastic hinges

Author:

Huang Huan,Li Yuyu,Li Wenxiong,Tang Guihe,Lv Yanmei

Abstract

AbstractIn this study, a novel approach for random vibration analysis of nonlinear frame structures under seismic random excitations is developed. The explicit time-domain method is improved in this approach by integrating the plastic hinge model, which can simulate the nonlinear behaviors caused by material property changes. Specifically, the hysteretic system’s equation of motion is constructed using auxiliary differential equations that govern the plastic rotational displacements and their corresponding hysteretic displacements. Additionally, by introducing the concept of equivalent excitations, an explicit iteration scheme for solving the equation of the hysteretic system is developed, in which the auxiliary differential equations are solved under the assumption that the plastic rotational velocity changes linearly with time between two adjacent time instants. Finally, by combining the Monte Carlo simulation method and the proposed explicit time-domain method, the non-stationary random responses of nonlinear frame structures can be obtained. As illustrated by numerical examples, the proposed method achieves satisfactory solution accuracy and efficiency when applied to nonlinear frame structures with plastic hinges. Moreover, the proposed iterative method resolves equations involving displacements describing the frame’s global state, plastic rotational displacements, and corresponding hysteretic parameters, introducing a novel concept for solving problems with nonlinear coupled variables of multiple types.

Funder

Guangdong Basic and Applied Basic Research Foundation, China

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference34 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3