Porous Si-SiO2 based UV Microcavities

Author:

Jimenéz-Vivanco María R.,García Godofredo,Carrillo Jesús,Agarwal Vivechana,Díaz-Becerril Tomás,Doti Rafael,Faubert Jocelyn,Lugo J. E.

Abstract

AbstractObtaining silicon-based photonic-structures in the ultraviolet range would expand the wavelength bandwidth of silicon technology, where it is normally forbidden. Herein, we fabricated porous silicon microcavities by electrochemical etching of alternating high and low refraction index layers; and were carefully subjected to two stages of dry oxidation at 350 °C for 30 minutes and 900 °C, with different oxidation times. In this way, we obtained oxidized porous silicon that induces a shift of a localized mode in the ultraviolet region. The presence of Si-O-Si bonds was made clear by FTIR absorbance spectra. High-quality oxidized microcavities were shown by SEM, where their mechanical stability was clearly visible. We used an effective medium model to predict the refractive index and optical properties of the microcavities. The model can use either two or three components (Si, SiO2, and air). The latter predicts that the microcavities are made almost completely of SiO2, implying less photon losses in the structure. The theoretical photonic-bandgap structure and localized photonic mode location showed that the experimental spectral peaks within the UV photonic bandgap are indeed localized modes. These results support that our oxidation process is very advantageous to obtain complex photonic structures in the UV region.

Funder

Consejo Nacional de Ciencia y Tecnología

Canadian Network for Research and Innovation in Machining Technology, Natural Sciences and Engineering Research Council of Canada

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3