Study on fracture development and progressive failure characteristics of downstream dam-type expansion tailings reservoir

Author:

Zhang Hongyue,Jin Jiaxu,Xu Yihong

Abstract

AbstractWith the economic development and industrialization, the increasingly accumulated tailings ponds in China have become a great risk. Due to the difficulty of selecting proper site for a new reservoir in Yunnan, a sub-dam was built at the downstream original reservoir. This study explored the fracture development and progressive failure characteristics of the tailings reservoir area after capacity expansion based on a similarity experiment and the numerical simulation. The results showed that the primary cracks in the reservoir area were more than those at the top of the sub-dam. With the increase of the upper load, the primary cracks further developed and penetrated the whole sub-dam top, and the sub-cracks were then produced under the concentrate stress of the primary cracks. After the further development of the sub-cracks, the secondary cracks parallel to the primary cracks were formed on the outer slope of the sub-dam. The progressive failure of a tailings dam can be summarized as: the maximum shear stress was firstly generated at the toe of the slope or the top of the dam which then extended to the top of the sub-dam in the form of a curve and finally formed the failure surface by connecting with the primary fracture of the tensile plastic zone at the top of the dam. The study also found that in the process of tailings accumulation in the new reservoir area, tailings would form "back pressure slope protection" at the initial dam of the original reservoir, which not only effectively delayed the occurrence of shear failure, but also inhibited the generation and penetration of tensile plastic zone.

Funder

National Natural Science Foundation of China

Key Laboratory of Geotechnical and Underground Engineering (Tongji University), Ministry of Education

Liaoning Bridge Safety Engineering Technical Innovation Center 2021 Annual Open Fund Project

'Comprehensive Development and Utilization of Industrial Solid Waste Civil Engineering ' Key Laboratory of Universities in Sichuan Province

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3