Author:
Mein Erin,Manne Tiina,Veth Peter,Weisbecker Vera
Abstract
AbstractSpecimen identification is the backbone of archeozoological research. The challenge of differentiating postcranial skeletal elements of closely related wild animals in biodiverse regions can prove a barrier to understanding past human foraging behaviours. Morphometrics are increasingly being employed to classify paleozoological animal remains, however, the potential of these methods to discriminate between wild animal groups has yet to be fully realised. Here we demonstrate the applicability of a traditional morphometric approach to taxonomically classify foot and ankle bones of kangaroos, a large and highly diverse marsupial family. Using multiple discriminant analysis, we classify archaeological specimens from Boodie Cave, in northwest Australia and identify the presence of two locally extinct macropod species during the terminal Pleistocene. The appearance of the banded hare-wallaby and northern nail-tail wallaby in the Pilbara region at this time provides independent evidence of the ecological and human responses to a changing climate at the end of the last Ice Age. Traditional morphometrics provides an accessible, inexpensive, and non-destructive tool for paleozoological specimen classification and has substantial potential for applications to other diverse wild faunas.
Funder
Australian Government Research Training Program
School of Social Science, The University of Queensland
Australian Archaeological Association Student Research Scheme Grant
Australian Research Council
Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage
Publisher
Springer Science and Business Media LLC
Reference78 articles.
1. Adams, D. C., Rohlf, F. J. & Slice, D. E. A field comes of age: Geometric morphometrics in the 21st century. Hystrix 24, 7–14. https://doi.org/10.4404/hystrix-24.1-6283 (2013).
2. Terray, L. et al. Skull morphological evolution in Malagasy endemic Nesomyinae rodents. PLoS ONE 17, e0263045. https://doi.org/10.1371/journal.pone.0263045 (2022).
3. Viacava, P., Baker, A. M., Blomberg, S. P., Phillips, M. J. & Weisbecker, V. Using 3D geometric morphometrics to aid taxonomic and ecological understanding of a recent speciation event within a small Australian marsupial (Antechinus: Dasyuridae). Zool. J. Linn. Soc. 1–16. https://doi.org/10.1093/zoolinnean/zlab048 (2021).
4. Brassard, C. et al. Morphological and functional divergence of the lower jaw between native and invasive red foxes. J. Mamm. Evol. 29, 335–352. https://doi.org/10.1007/s10914-021-09593-2 (2022).
5. Boessneck, J. & von den Driesch, A. The significance of measuring animal bones from archaeological sites. In Approaches to Faunal Analysis in the Middle East (eds Meadows, R. H. & Zeder, M. A.) 5–39 (Peabody Museum Bulletin 2, 1978).
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献