Evaluating the stability of artificial sand-binding vegetation by combining statistical methods and a neural network model

Author:

Fu Tonglin,Li Xinrong

Abstract

AbstractThe stability of artificial sand-binding vegetation determines the success or failure of restoration of degraded ecosystem, accurately evaluating the stability of artificial sand-binding vegetation can provide evidence for the future management and maintenance of re-vegetated regions. In this paper, a novel data-driven evaluation model was proposed by combining statistical methods and a neural network model to evaluate the stability of artificial sand-binding vegetation in the southeastern margins of the Tengger Desert, where the evaluation indexes were selected from vegetation, soil moisture, and soil. The evaluation results indicate that the stability of the artificially re-vegetated belt established in different years (1956a, 1964a, 1981a, and 1987a) tend to be stable with the increase of sand fixation years, and the artificially re-vegetated belts established in 1956a and 1964a have almost the same stability, but the stability of the artificially re-vegetated belt established in 1981a and 1987a have a significant difference. The evaluation results are reliable and accurate, which can provide evidence for the future management of artificial sand-binding vegetation.

Funder

The Creative Research Groups of China

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3