Identification of KIFC1 as an independent prognostic marker in renal clear cell carcinoma correlates with tumor proliferation and immune infiltration

Author:

Du Bin,Wang Jia,Zheng Jinping,Huo Jing,Wang Pu

Abstract

AbstractRenal clear cell carcinoma (ccRCC) is the world's most common form of cancer. Up to a third will develop metastases; the 5-year survival rate of the patients was only 14%. Practical prognostic markers remain to be discovered. Kinesin-like protein (KIFC1), a critical factor in maintaining the stability of the microtubule system, has significant prognostic value in some tumors. We analyzed the prognostic value, associated signaling pathways, and regulatory mechanisms of KIFC1 in ccRCC through bioinformatics and proteomics. Concretely, both mRNA and protein expression levels of KIFC1 were dramatically upregulated. KIFC1 is an independent prognostic factor for ccRCC. The expression of KIFC1 showed a significant positive correlation (Spearman coefficient > 0.7) with tumor proliferation-related pathways (tumor proliferation, G2/M checkpoint, and DNA replication) and tumor inflammation. Further, intratumoral immune cell analysis revealed that high expression of KIFC1 predicted more infiltration of CD8 + T and CD4 + T cells (p < 0.001). However, there was a significant positive relationship between CD8 + T cells and numerous immune checkpoint genes. CD8 + T cells in tumors from the KIFC1 high expression group were at the dysregulated state. High expression of KIFC1 may predict a poor immunotherapy outcome. By proteomics, we analyzed proteins interacting with KIFC1; spliceosome proteins had the most significant enrichment, indicating the new directions for KIFC1 investigation. In conclusion, our study identified KIFC1 as an independent prognostic factor in renal clear cell carcinoma, and the associated processes involved tumor proliferation and immune infiltration. KIFC1 had a close relationship with spliceosome proteins; it may be a new research direction.

Funder

Technology Commission Foundation of Shanxi Province

Science and technology innovation plan of Shanxi Higher Education Institutions

Shanxi Provincial Health Commission Research Project

national natural science foundation of china

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3