COCO-Search18 fixation dataset for predicting goal-directed attention control

Author:

Chen Yupei,Yang Zhibo,Ahn Seoyoung,Samaras Dimitris,Hoai Minh,Zelinsky Gregory

Abstract

AbstractAttention control is a basic behavioral process that has been studied for decades. The currently best models of attention control are deep networks trained on free-viewing behavior to predict bottom-up attention control – saliency. We introduce COCO-Search18, the first dataset of laboratory-quality goal-directed behavior large enough to train deep-network models. We collected eye-movement behavior from 10 people searching for each of 18 target-object categories in 6202 natural-scene images, yielding $$\sim$$ 300,000 search fixations. We thoroughly characterize COCO-Search18, and benchmark it using three machine-learning methods: a ResNet50 object detector, a ResNet50 trained on fixation-density maps, and an inverse-reinforcement-learning model trained on behavioral search scanpaths. Models were also trained/tested on images transformed to approximate a foveated retina, a fundamental biological constraint. These models, each having a different reliance on behavioral training, collectively comprise the new state-of-the-art in predicting goal-directed search fixations. Our expectation is that future work using COCO-Search18 will far surpass these initial efforts, finding applications in domains ranging from human-computer interactive systems that can anticipate a person’s intent and render assistance to the potentially early identification of attention-related clinical disorders (ADHD, PTSD, phobia) based on deviation from neurotypical fixation behavior.

Funder

National Science Board

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Explaining Disagreement in Visual Question Answering Using Eye Tracking;Proceedings of the 2024 Symposium on Eye Tracking Research and Applications;2024-06-04

2. Oculomotor routines for perceptual judgments;Journal of Vision;2024-05-06

3. Visual ScanPath Transformer: Guiding Computers to See the World;2023 IEEE International Symposium on Mixed and Augmented Reality (ISMAR);2023-10-16

4. Modeling Visual Impairments with Artificial Neural Networks: a Review;2023 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW);2023-10-02

5. Oculomotor routines for perceptual judgments;2023-09-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3