Machine learning analysis predicts a person’s sex based on mechanical but not thermal pain thresholds

Author:

Lötsch Jörn,Mayer Benjamin,Kringel Dario

Abstract

AbstractSex differences in pain perception have been extensively studied, but precision medicine applications such as sex-specific pain pharmacology have barely progressed beyond proof-of-concept. A data set of pain thresholds to mechanical (blunt and punctate pressure) and thermal (heat and cold) stimuli applied to non-sensitized and sensitized (capsaicin, menthol) forearm skin of 69 male and 56 female healthy volunteers was analyzed for data structures contingent with the prior sex structure using unsupervised and supervised approaches. A working hypothesis that the relevance of sex differences could be approached via reversibility of the association, i.e., sex should be identifiable from pain thresholds, was verified with trained machine learning algorithms that could infer a person's sex in a 20% validation sample not seen to the algorithms during training, with balanced accuracy of up to 79%. This was only possible with thresholds for mechanical stimuli, but not for thermal stimuli or sensitization responses, which were not sufficient to train an algorithm that could assign sex better than by guessing or when trained with nonsense (permuted) information. This enabled the translation to the molecular level of nociceptive targets that convert mechanical but not thermal information into signals interpreted as pain, which could eventually be used for pharmacological precision medicine approaches to pain. By exploiting a key feature of machine learning, which allows for the recognition of data structures and the reduction of information to the minimum relevant, experimental human pain data could be characterized in a way that incorporates "non" logic that could be translated directly to the molecular pharmacological level, pointing toward sex-specific precision medicine for pain.

Funder

Deutsche Forschungsgemeinschaft

Johann Wolfgang Goethe-Universität, Frankfurt am Main

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3