Grafting red clay with Bi2O3 nanoparticles into epoxy resin for gamma-ray shielding applications

Author:

Elsafi Mohamed.,Almuqrin Aljawhara H.,Almutairi Haifa M.,Al-Saleh Wafa M.,Sayyed M. I.

Abstract

AbstractWe developed new composites for photons shielding applications. The composite were prepared with epoxy resin, red clay and bismuth oxide nanoparticles (Bi2O3 NPs). In order to establish which ratio of red clay to Bi2O3 NPs provides the best shielding capabilities, several different ratios of red clay to Bi2O3 NPs were tested. The transmission factor (TF) was calculated for two different thicknesses of each sample. From the TF data, we found that epoxy resin materials have a high attenuation capacity at low energy. For ERB-10 sample (40%Epoxy + 50% Red clay + 10% Bi2O3 NPs), the TF values are 52.3% and 14.3% for thicknesses of 0.5 and 1.5 cm (at 0.06 MeV). The composite which contains the maximum amount of Bi2O3 nanoparticles (40%Epoxy + 50% Red clay + 10% Bi2O3 NPs, coded as ERB-30) has lower TF than the other composites. The TF data demonstrated that ERB-30 is capable of producing more effective attenuation from gamma rays. We also determined the linear attenuation coefficient (LAC) for the prepared composites and we found that the LAC increases for a given energy in proportion to the Bi2O3 NPs ratio. For the ERB-0 (free Bi2O3 NPs), the LAC at 0.662 MeV is 0.143 cm−1, and it increases to 0.805 cm−1 when 10% of Bi2O3 NPs is added to the epoxy resin composite. The half value layer (HVL) results showed that the thickness necessary to shield that photons to its half intensity can be significantly lowered by increasing the weight fraction of the Bi2O3 NPs in the epoxy resin composite from 0 to 30%. The HVL for ERB-20 and ERB-30 were compared with other materials such as (Epoxy as a matrix material and Al2O3, Fe2O3, MgO and ZrO2 as filler oxides in the matrix at 0.662 MeV. The HVL values for ERB-20 and ERB-30 are 4.385 and 3.988 cm and this is lower than all the selected epoxy polymers.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3