Author:
Jangra Ramavtar,Ahlawat Kiran,Dixit Ambesh,Prakash Ram
Abstract
AbstractAir pollution is one of the top 5 risks causing chronic diseases according to WHO and airborne transmitted pathogens infection is a huge challenge in the current era. Long living pathogens and small size aerosols are not effectively dealt with by the available indoor air purifiers. In this work, a dielectric barrier discharge (DBD) based portable cold-plasma detergent in environment device is reported and its disinfection efficiency has been analyzed in the indoor environment of sizes up to 3 × 2.4 × 2.4 m3. The deactivation efficiency of total microbial counts (TMCs) and total fungal counts (TFCs) is found to be more than 99% in 90 min of continuous operation of the device at the optimized parameters. The complete inactivation of MS2 phage and Escherichia coli bacteria with more than 5 log reduction (99.999%) has also been achieved in 30 min and 90 min of operation of the device in an enclosed environment. The device is able to produce negative ions predominantly dominated by natural plasma detergent along with positive ions in the environment similar to mother nature. The device comprises a coaxial DBD geometry plasma source with a specially designed wire mesh electrode of mild steel with a thickness of 1 mm. The need for feed gas, pellets and/or differential pressure has been eliminated from the DBD discharge source for efficient air purification. The existence of negative ions for more than 25 s on average is the key advantage, which can also deactivate long living pathogens and small size aerosols.
Funder
Science and Engineering Research Board
Publisher
Springer Science and Business Media LLC
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献