New integrated hydrologic approach for the assessment of rivers environmental flows into the Urmia Lake

Author:

Mobadersani Ali,Hosseinzadeh Dalir Ali,Yasi Mehdi,Arvanaghi Hadi,Kennard Mark J.

Abstract

AbstractRecent research has greatly focused on the environmental water supplement of rivers individually and independently. However, a comprehensive and integrated view of all rivers in the basin is simultaneously required in closed basins leading to lakes and wetlands. This has affected Lake Urmia, which is the second largest saltwater lake in the world. It has been in danger of drying up in recent years as a result of not allocating the required environmental flow (e-flow) due to the increase in water resource consumption in the agricultural sector and climate changes. In this study, a method derived from the flow duration curve shifting (FDCS) method is presented in addition to explaining the possibility of providing the e-flow of rivers leading to the lake. The method can make the least amount of change in the hydrological characteristics of rivers while providing the volume of required water by the ecosystem of lakes or downstream wetlands. Unlike the conventional method which presents the results on a monthly basis, the above-mentioned method is based on daily data of hydrometric stations and can calculate the amount of the environmental requirement of rivers in real-time according to the upstream inlet of the river. This method has been used in the Urmia Lake basin. According to the results, it can provide the environmental requirement of the lake by allocating 70.5% of the annual flow of rivers and thus can save the lake and the ecosystem of the region from the current critical conditions.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3