Investigating the bearing performance of the foundation under the combined effects of flood scouring and soaking

Author:

Han Zheng,Ding Haohui,Yan Hongdi,Zeng Chuicheng,Li Changli,Xie Wendu,Fu Bangjie,Li Yange

Abstract

AbstractBearing capacity degradation of foundations under the impact of the flood is one of the major reasons responsible for the collapse and damage to the rural buildings, posing a serious threat to the local village societies. Based on a case study of a rural building foundation had been destroyed by flooding. This paper investigated the deterioration process of rural building foundations under the combined effect of dynamic scouring and static soaking caused by flooding. Using the two-dimensional shallow water equation, erosion depth was calculated for different flood velocities. Then, the bearing capacity degradation under the combined scouring-soaking effect was analyzed using the finite element method. Finally, investigating the influence of inflow direction and building group masking on the foundation's bearing capacity. The results indicate that under the combined effect, the bearing capacity of village building foundations decreases by 47.88%, with scouring slightly more impactful than soaking. Inflow angle has minimal effect on bearing performance, while the masking effect of the building group provides better protection for the foundation of rear buildings.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hunan Province

Natural Science Foundation for Excellent Young Scholars of Hunan

Innovation Provincial Program of Hunan Province

Science and Technology Plan Project of Changsha

Innovation Driven Program of Central South University

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Impact of flooding events on buried infrastructures: a review;Frontiers in Built Environment;2024-04-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3