Empirical comparison of analytical approaches for identifying molecular HIV-1 clusters

Author:

Novitsky Vlad,Steingrimsson Jon A.,Howison Mark,Gillani Fizza S.,Li Yuanning,Manne Akarsh,Fulton John,Spence Matthew,Parillo Zoanne,Marak Theodore,Chan Philip A.,Bertrand Thomas,Bandy Utpala,Alexander-Scott Nicole,Dunn Casey W.,Hogan Joseph,Kantor Rami

Abstract

Abstract Public health interventions guided by clustering of HIV-1 molecular sequences may be impacted by choices of analytical approaches. We identified commonly-used clustering analytical approaches, applied them to 1886 HIV-1 Rhode Island sequences from 2004–2018, and compared concordance in identifying molecular HIV-1 clusters within and between approaches. We used strict (topological support ≥ 0.95; distance 0.015 substitutions/site) and relaxed (topological support 0.80–0.95; distance 0.030–0.045 substitutions/site) thresholds to reflect different epidemiological scenarios. We found that clustering differed by method and threshold and depended more on distance than topological support thresholds. Clustering concordance analyses demonstrated some differences across analytical approaches, with RAxML having the highest (91%) mean summary percent concordance when strict thresholds were applied, and three (RAxML-, FastTree regular bootstrap- and IQ-Tree regular bootstrap-based) analytical approaches having the highest (86%) mean summary percent concordance when relaxed thresholds were applied. We conclude that different analytical approaches can yield diverse HIV-1 clustering outcomes and may need to be differentially used in diverse public health scenarios. Recognizing the variability and limitations of commonly-used methods in cluster identification is important for guiding clustering-triggered interventions to disrupt new transmissions and end the HIV epidemic.

Funder

National Institute of Allergy and Infectious Diseases

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference44 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3