Author:
Owen-Bellini Michael,Moffitt Stephanie L.,Sinha Archana,Maes Ashley M.,Meert Joseph J.,Karin Todd,Takacs Chris,Jenket Donald R.,Hartley James Y.,Miller David C.,Hacke Peter,Schelhas Laura T.
Abstract
AbstractNovel methods for advancing reliability testing of photovoltaic (PV) modules and materials have recently been developed. Combined-accelerated stress testing (C-AST) is one such method which has demonstrated reliable reproduction of some field-failures which were not reproducible by standard certification tests. To increase confidence and assist in the development of C-AST, and other new testing protocols, it is important to validate that the failure modes observed and mechanisms induced are representative of those observed in the field, and not the product of unrealistic stress conditions. Here we outline a method using appropriate materials characterization and modelling to validate the failure mechanisms induced in C-AST such that we can increase confidence in the test protocol. The method is demonstrated by applying it to a known cracking failure of a specific polyamide (PA)-based backsheet material. We found that the failure of the PA-based backsheet was a result of a combination of stress factors. Photo-oxidation from ultra-violet (UV) radiation exposure caused a reduction in fracture toughness, which ultimately lead to the cracking failure. We show that the chemical and structural changes observed in the backsheet following C-AST aging were also observed in field-aged samples. These results increase confidence that the conditions applied in C-AST are representative of the field and demonstrates our approach to validating the failure mechanisms induced.
Funder
U.S. Department of Energy
Publisher
Springer Science and Business Media LLC
Reference40 articles.
1. Jordan, D. C., Silverman, T. J., Wohlgemuth, J. H., Kurtz, S. R. & VanSant, K. T. Photovoltaic failure and degradation modes. Prog. Photovoltaics Res. Appl. 25(4), 318–326 (2017).
2. Sharma, V. & Chandel, S. S. Performance and degradation analysis for long term reliability of solar photovoltaic systems: A review. Renew. Sustain. Energy Rev. 27, 753–767 (2013).
3. Miller, D. C. et al. Comparison of breakdown-voltage of contemporary and veteran photovoltaic backsheets. Sol. Energy 182, 29–41 (2019).
4. Oreski, G. & Wallner, G. M. Damp heat induced physical aging of PV encapsulation materials. 2010 12th IEEE Intersoc. Conf. Therm. Thermomechanical Phenom. Electron. Syst. ITherm 2010, 1–6 (2010).
5. Bosco, N., Silverman, T. J. & Kurtz, S. Climate specific thermomechanical fatigue of flat plate photovoltaic module solder joints. Microelectron. Reliab. 62, 124–129 (2016).
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献