Author:
Chen Wei-Chuan,Chen Chin-Hsuan,Huang Angus,Lei Kaweng,Mikolas David,Dai Ming-kwan,Kuo Je-Ming,Lin Dai-Shien,Cheng Cheng-Maw,Jeng H.-T.,Tang S.-J.
Abstract
AbstractUsing low-energy electron diffraction and angle-resolved photoemission spectroscopy, we investigated the lattice and electronic structures of the Pb(111) surface upon the adsorption of Au atoms at the low temperature T = 40 K. Unlike earlier results showing the formation of PbAu-alloy layers at room temperature, we found that Au atoms form a ultra-thin superstructure, Au/Pb(111)-3 × 3, on top of the Pb(111) surface. Moreover, three surface-state bands, S1, S2, and S3, are induced within and immediately adjacent to the Pb bulk projected band gap centered at the surface zone boundary$${\overline{\text{M}}}_{Pb(111)}$$M¯Pb(111)at the energies of − 0.02, − 1.05, and − 2.56 eV, respectively. First-principles calculation based on Au/Pb(111)-3 × 3 confirms the measured surface-state bands among which the most interesting are the S1and S3surface states. They are derived from surface resonances in Pb(111). Moreover, S1, which disperses across Fermi level, exhibits a large anisotropic Rashba splitting with α of 1.0 and 3.54 eVÅ in the two symmetry directions centered at$${\overline{\text{M}}}_{Pb(111)}$$M¯Pb(111). The corresponding Rashba splitting of S1band in Cu/Pb(111)-3 × 3 and Ag/Pb(111)-3 × 3 were calculated for comparison.
Funder
Ministry of Science & Technology of Taiwan
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献