Specific absorption rate reduction for sub-6 frequency range using polarization dependent metamaterial with high effective medium ratio

Author:

Ramachandran Tayaallen,Faruque Mohammad Rashed Iqbal,Islam Mohammad Tariqul

Abstract

AbstractThis research study introduces a multi-layered square-shaped metamaterial (MSM) structure for the electromagnetic (EM) absorption reduction in wireless mobile devices. Usually, wireless devices, for example, a cellular phone emits radiofrequency (RF) energy to the surroundings when used it. Moreover, fast-growing wireless communication technologies that support cellular data networks have also motivated this study. Hence, the focus of the research was to reduce the Specific Absorption Rate (SAR) for the Sub-6 frequency range by designing a multi-layered and compact, 10 × 10mm2 sized metamaterial structure that can be attached inside a mobile phone by avowing any overlapping with existing parts. Overall, six distinct square-shaped metamaterials were constructed on 0.25 mm thick Rogers RO3006 substrate material to reach the target of this investigation. Furthermore, numerical simulations of the proposed metamaterial electromagnetic properties and SAR reduction values were performed by adopting Computer Simulation Technology (CST) Microwave Studio 2019 software. From these simulations, the proposed MSM structure exhibited multi-band resonance frequencies accurately at 1.200, 1.458, 1.560, 1.896 GHz (at L-band), 2.268, 2.683 2.940, 3.580 GHz (at S-band) and 5.872 GHz (at C-band). Simultaneously, the proposed MSM structure was simulated in High-Frequency Structure Simulator (HFSS) to authenticate the numerical simulation data. The comparison of simulation data shows that only the primary and last resonance frequencies were reduced by 0.02 and 0.012 GHz, whereas the rest of the frequencies were increased by 0.042, 0.030, 0.040, 0.032, 0.107, 0.080, and 0.020 GHz in sequential order. In addition, the introduced MSM structure manifests left-handed behaviour at all the resonance frequencies. Nevertheless, the highest recorded SAR values were 98.136% and 98.283% at 1.560 GHz for 1 g and 10 g of tissue volumes. In conclusion, the proposed MSM met the objectives of this research study and can be employed in EM absorption reduction applications.

Funder

Kementerian Pendidikan Malaysia

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3