Origin and timing of spilitic alterations in volcanic rocks from Głuszyca Górna in the Intra-Sudetic Basin, Poland

Author:

Powolny Tomasz,Dumańska-Słowik Magdalena,Anczkiewicz Aneta A.,Sikorska-Jaworowska Magdalena

Abstract

AbstractThe formation of spilitic assemblages (i.e. chlorite and albite) has been ubiquitously involved during the evolution of continental early-Permian volcanics from the Intra-Sudetic Basin (ISB). Based on the investigation of laccolith-type and variably-altered trachyandesite exposure in the vicinity of Głuszyca Górna (Lower Silesia, Poland), we have demonstrated that apatite fission-track dating (AFT), coupled with chlorite geothermometry, can be successfully applied to denote the timing of low-temperature alterations within volcanic rocks. The primary magmatic assemblages of the trachyandesites (i.e. augite and andesine-labradorite) have been affected by chloritization and alblitization respectively, followed by the formation of secondary titanite, celadonite, and calcite. The chlorite species have crystallized in the range of 106–170 °C, that exceeds Apatite Partial Annealing Zone (70–110 °C). The secondary, nearly pure albite (Ab ~ 99 mol.%) with weak to dark-brown cathodoluminescence replaces primary plagioclase (~ An37–50Ab47–58Or2–4) along the cleavage and/or twinning planes during Al3+–conservative reaction. The accessory apatite is marked by swallow-tail terminations indicative of rapid cooling formation conditions. It shows homogenous chemical composition, high F content, and pink to yellow (REE3+ and Mn2+-activated, respectively) cathodoluminescence. Based on the AFT dating, the development of spilitic alterations within the early-Permian (ca 290 Ma) laccolith from Głuszyca could not only span the range of 182–161 Ma (Middle Jurassic), but also occurred prior to large-scale geological events in the ISB, such as burial under late-Mesozoic sediments, as well as tectonic inversion and exhumation. Whole-rock geochemistry of trachyandesites altered to various extent, indicates that original trace elements concentrations, except for i.e. Sr, Cs, and Ba, could be preserved during low-temperature alteration (spilitization). Meanwhile, geochemical fingerprint of the volcanics (i.e. humped-shaped mantle normalized trace element diagrams and positive Zr–Hf anomaly) points to the crustal contamination during magma evolution, combined with the mantle metasomatism in the source via subduction-derived components (i.e. fluids), as shown by i.e. low Nb/Th and Nb/LREE ratios.

Funder

Akademia Górniczo-Hutnicza im. Stanislawa Staszica

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3