Development and validation of an artificial neural network model for non-invasive gastric cancer screening and diagnosis

Author:

Fan Zeyu,Guo Yuxin,Gu Xinrui,Huang Rongrong,Miao Wenjun

Abstract

AbstractNon-invasive and cost-effective diagnosis of gastric cancer is essential to improve outcomes. Aim of the study was to establish a neural network model based on patient demographic data and serum biomarker panels to aid gastric cancer diagnosis. A total of 295 patients hospitalized in Nanjing Drum Tower hospital diagnosed with gastric cancer based on tissue biopsy, and 423 healthy volunteers were included in the study. Demographical information and tumor biomarkers were obtained from Hospital Information System (HIS) as original data. Pearson's correlation analysis was applied on 574 individuals’ data (training set, 229 patients and 345 healthy volunteers) to analyze the relationship between each variable and the final diagnostic result. And independent sample t test was used to detect the differences of the variables. Finally, a neural network model based on 14 relevant variables was constructed. The model was tested on the validation set (144 individuals including 66 patients and 78 healthy volunteers). The predictive ability of the proposed model was compared with other common machine learning models including logistic regression and random forest. Tumor markers contributing significantly to gastric cancer screening included CA199, CA125, AFP, and CA242 were identified, which might be considered as important inspection items for gastric cancer screening. The accuracy of the model on validation set was 86.8% and the F1-score was 85.0%, which were better than the performance of other models under the same condition. A non-invasive and low-cost artificial neural network model was developed and proved to be a valuable tool to assist gastric cancer diagnosis.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Key Project supported by Medical Science and technology development Foundation, Nanjing Department of Health

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3