Generator based approach to analyze mutations in genomic datasets

Author:

Jain Siddharth,Xiao Xiongye,Bogdan Paul,Bruck Jehoshua

Abstract

AbstractIn contrast to the conventional approach of directly comparing genomic sequences using sequence alignment tools, we propose a computational approach that performs comparisons between sequence generators. These sequence generators are learned via a data-driven approach that empirically computes the state machine generating the genomic sequence of interest. As the state machine based generator of the sequence is independent of the sequence length, it provides us with an efficient method to compute the statistical distance between large sets of genomic sequences. Moreover, our technique provides a fast and efficient method to cluster large datasets of genomic sequences, characterize their temporal and spatial evolution in a continuous manner, get insights into the locality sensitive information about the sequences without any need for alignment. Furthermore, we show that the technique can be used to detect local regions with mutation activity, which can then be applied to aid alignment techniques for the fast discovery of mutations. To demonstrate the efficacy of our technique on real genomic data, we cluster different strains of SARS-CoV-2 viral sequences, characterize their evolution and identify regions of the viral sequence with mutations.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3