Enhanced coherent transition radiation from midinfrared-laser-driven microplasmas

Author:

Glek P. B.,Zheltikov A. M.

Abstract

AbstractWe present a particle-in-cell (PIC) analysis of terahertz (THz) radiation by ultrafast plasma currents driven by relativistic-intensity laser pulses. We show that, while the I0$${\lambda }_{0}^{2}$$ λ 0 2 product of the laser intensity I0 and the laser wavelength λ0 plays the key role in the energy scaling of strong-field laser-plasma THz generation, the THz output energy, WTHz, does not follow the I0$${\lambda }_{0}^{2}$$ λ 0 2 scaling. Its behavior as a function of I0 and λ0 is instead much more complex. Our two- and three-dimensional PIC analysis shows that, for moderate, subrelativistic and weakly relativistic fields, WTHz(I0$${\lambda }_{0}^{2}$$ λ 0 2 ) can be approximated as (I0λ02)α, with a suitable exponent α, as a clear signature of vacuum electron acceleration as a predominant physical mechanism whereby the energy of the laser driver is transferred to THz radiation. For strongly relativistic laser fields, on the other hand, WTHz(I0$${\lambda }_{0}^{2}$$ λ 0 2 ) closely follows the scaling dictated by the relativistic electron laser ponderomotive potential $${\mathscr{F}}_{{\text{e}}}$$ F e , converging to WTHz$${I}_{0}^{1/2}{\lambda }_{0}$$ I 0 1 / 2 λ 0 for very high I0, thus indicating the decisive role of relativistic ponderomotive charge acceleration as a mechanism behind laser-to-THz energy conversion. Analysis of the electron distribution function shows that the temperature Te of hot laser-driven electrons bouncing back and forth between the plasma boundaries displays the same behavior as a function of I0 and λ0, altering its scaling from (I0λ02)α to that of $${\mathscr{F}}_{{\text{e}}}$$ F e , converging to WTHz$${I}_{0}^{1/2}{\lambda }_{0}$$ I 0 1 / 2 λ 0 for very high I0. These findings provide a clear physical picture of THz generation in relativistic and subrelativistic laser plasmas, suggesting the THz yield WTHz resolved as a function of I0 and λ0 as a meaningful measurable that can serve as a probe for the temperature Te of hot electrons in a vast class of laser–plasma interactions. Specifically, the α exponent of the best (I0λ02)α fit of the THz yield suggests a meaningful probe that can help identify the dominant physical mechanisms whereby the energy of the laser field is converted to the energy of plasma electrons.

Funder

Russian Science Foundation

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3