Author:
Harris William Carter,Ricketts David S.
Abstract
AbstractWe present an analysis for metamaterial (MM) enhanced wireless power transfer (WPT) that includes new results revealing the impact of magnetostatic surface waves and their degradation of WPT efficiency. Our analysis shows that the commonly used fixed loss model used by previous works leads to the incorrect conclusion regarding the highest efficeincy MM configuration. Specifically, we show that the “perfect lens” configuration provides lower WPT efficiency enhancement in comparison to many other MM configurations and operating conditions. To understand why, we introduce a model for quantifying loss in MM-enhanced WPT and introduce a new figure of merit on efficiency enhancement, $$G_{\rho }$$
G
ρ
. Using both simulation and experimental prototypes, we show that while the “perfect-lens” MM achieves a field enhancement of four times the other configurations considered, its internal loss due to magnetostatic waves significantly reduces its efficiency-enhancement. Surprisingly, all the MM configurations analyzed other than the “perfect-lens” achieved higher efficiency enhancement in simulation and in experiment than the perfect lens.
Publisher
Springer Science and Business Media LLC
Reference26 articles.
1. Choi, J. & Seo, C. H. Progress In Electromagnetics Research 106, 33–47 (2010).
2. Wang, B. et al. Experiments on wireless power transfer with metamaterials. Appl. Phys. Lett. 98, 254101 (2011).
3. Wang, B. et al. Wireless power transfer with metamaterials. in Proceedings of the 5th European Conference on Antennas and Propagation (EUCAP), 3905–3908 (2011).
4. Lipworth, G. et al. Magnetic metamaterial superlens for increased range wireless power transfer. Sci. Rep. 4, 3642 (2014).
5. Pendry, J. B. Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966–3969. https://doi.org/10.1103/PhysRevLett.85.3966 (2000).
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献