The STING inhibitor (ISD-017) reduces glomerulonephritis in 129.B6.Fcgr2b-deficient mice

Author:

Alee Isara,Chantawichitwong Papasara,Leelahavanichkul Asada,Paludan Søren R.,Pisitkun Trairak,Pisitkun Prapaporn

Abstract

AbstractThe absence of stimulator of interferon genes (STING) in 129.B6.Fcgr2b-deficient mice rescue lupus phenotypes. The administration of a STING inhibitor (ISD017) into the young 129.B6.Fcgr2b-deficient mice prevents lupus nephritis development. This study mainly aimed to evaluate the effects of STING inhibition (ISD107) on established SLE in mice to prove that ISD017 could be a good therapeutic drug to reverse the already set-up autoimmunity and kidney impairment. Twenty-four-week-old Fcgr2b-deficient mice were treated with cyclophosphamide (25 mg/kg, intraperitoneal, once per week), ISD017 (10 mg/kg, intraperitoneal, three times per week), or control vehicle for 8 weeks, and were analyzed for phenotypes. Both ISD017 and cyclophosphamide treatment increased long-term survival and reduced the severity of glomerulonephritis in Fcgr2b-deficient mice. While cyclophosphamide reduced activated B cells (B220+GL-7+), ISD017 decreased activated T cells (CD4+CD69+) and neutrophils (Ly6c+Ly6g+) in Fcgr2b-deficient mice. In addition, ISD017 reduced IL-1β and interferon-inducible genes. In summary, ISD017 treatment in symptomatic 129.B6.Fcgr2b-deficient mice reduced the severity of glomerulonephritis and increased long-term survival. ISD017 worked comparably to cyclophosphamide for treating lupus nephritis in 129.B6.Fcgr2b-deficient mice. ISD017 reduced activated T cells and neutrophils, while cyclophosphamide targeted activated B cells. These results suggested that STING inhibitors can potentially be a new therapeutic drug for treating lupus.

Funder

Mahidol University

Chulalongkorn University Graduate Scholarship to commemorate the 72nd Anniversary of His Majesty King Bhumibol Adulyadej

European Research Council

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3