Leveraging a KRAS-based signature to predict the prognosis and drug sensitivity of colon cancer and identifying SPINK4 as a new biomarker

Author:

Huo Jian-Ting,Tuersun Abudumaimaitijiang,Yu Su-Yue,Zhang Yu-Chen,Feng Wen-Qing,Xu Zhuo-Qing,Zhao Jing-KunORCID,Zong Ya-PingORCID,Lu Ai-GuoORCID

Abstract

AbstractKRAS is one of the leading mutations reported in colon cancer. However, there are few studies on the application of KRAS related signature in predicting prognosis and drug sensitivity of colon cancer patient. We identified KRAS related differentially expressed genes (DEGs) using The Cancer Genome Atlas (TCGA) database. A signature closely related to overall survival was recognized with Kaplan–Meier survival analysis and univariate cox regression analysis. Then we validated this signature with overall expression score (OE score) algorithm using both scRNA-seq and bulk RNA-seq data. Based on this signature, we performed LASSO cox regression to establish a prognostic model, and corresponding scores were calculated. Differences in genomic alteration, immune microenvironment, drug sensitivity between high- and low-KRD score groups were investigated. A KRAS related signature composed of 80 DEGs in colon cancer were recognized, among which 19 genes were selected to construct a prognostic model. This KRAS related signature was significantly correlated with worse prognosis. Furthermore, patients who scored lower in the prognostic model presented a higher likelihood of responding to chemotherapy, targeted therapy and immunotherapy. Furthermore, among the 19 selected genes in the model, SPINK4 was identified as an independent prognostic biomarker. Further validation in vitro indicated the knockdown of SPINK4 promoted the proliferation and migration of SW48 cells. In conclusion, a novel KRAS related signature was identified and validated based on clinical and genomic information from TCGA and GEO databases. The signature was proved to regulate genomic alteration, immune microenvironment and drug sensitivity in colon cancer, and thus might serve as a predictor for individual prognosis and treatment.

Funder

National Natural Science Foundation of China General Program

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3