Author:
Mohammadian Erfan,Kheirollahi Mahdi,Liu Bo,Ostadhassan Mehdi,Sabet Maziyar
Abstract
AbstractPetrophysical rock typing (PRT) and permeability prediction are of great significance for various disciplines of oil and gas industry. This study offers a novel, explainable data-driven approach to enhance the accuracy of petrophysical rock typing via a combination of supervised and unsupervised machine learning methods. 128 core data, including porosity, permeability, connate water saturation (Swc), and radius of pore throats at 35% mercury injection (R35) were obtained from a heterogeneous carbonate reservoir in Iran and used to train a supervised machine learning algorithm called Extreme Gradient Boosting (XGB). The algorithm output was a modified formation zone index (FZIM*), which was used to accurately estimate permeability (R2 = 0.97) and R35 (R2 = 0.95). Moreover, FZIM* was combined with an unsupervised machine learning algorithm (K-means clustering) to find the optimum number of PRTs. 4 petrophysical rock types (PRTs) were identified via this method, and the range of their properties was discussed. Lastly, shapely values and parameter importance analysis were conducted to explain the correlation between each input parameter and the output and the contribution of each parameter on the value of FZIM*. Permeability and R35 were found to be most influential parameters, where Swc had the lowest impact on FZIM*.
Funder
Science and Technology Project Heilongjiang Province
Publisher
Springer Science and Business Media LLC
Cited by
35 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献