Predicting cascading extinctions and efficient restoration strategies in plant–pollinator networks via generalized positive feedback loops

Author:

Fatemi Nasrollahi Fatemeh Sadat,Campbell Colin,Albert Réka

Abstract

AbstractThe extinction of a species in a plant–pollinator mutualistic community can cause cascading effects and lead to major biodiversity loss. The ecologically important task of predicting the severity of the cascading effects is made challenging by the complex network of interactions among the species. In this work, we analyze an ensemble of models of communities of plant and pollinator species. These models describe the mutualistic inter-species interactions by Boolean threshold functions. We show that identifying generalized positive feedback loops can help pinpoint the species whose extinction leads to catastrophic and substantial damage to the whole community. We compare these results with the damage percentage caused by the loss of species identified as important by previously studied structural measures and show that positive feedback loops and the information gained from them can identify certain crucial species that the other measures fail to find. We also suggest mitigation measures for two specific purposes: (1) prevent the damage to the community by protecting a subset of the species, and (2) restore the community after the damage by restoring a subset of species. Our analyses indicate that the generalized positive feedback loops predict the most efficient strategies to achieve these purposes. The correct identification of species in each category has important implications for conservation efforts and developing community management strategies.

Funder

NSF

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference59 articles.

1. Shalizi, C. R. Methods and techniques of complex systems science: An overview. Complex Syst. Sci. Biomed. 33–114 (2006).

2. Sayama, H. Introduction to the Modeling and Analysis of Complex Systems (Open SUNY Textbooks, 2015).

3. Boccara, N. Modeling Complex Systems (Springer Science & Business Media, 2010).

4. Garcia, D., Garas, A. & Schweitzer, F. Modeling Collective Emotions in Online Social Systems. Collective Emotions 389–406 (Oxford University Press, 2014).

5. Montoya, J. M. & Solé, R. V. Small world patterns in food webs. J. Theor. Biol. 214, 405–412 (2002).

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3