European beech spring phenological phase prediction with UAV-derived multispectral indices and machine learning regression

Author:

Krause StuartORCID,Sanders TanjaORCID

Abstract

AbstractAcquiring phenological event data is crucial for studying the impacts of climate change on forest dynamics and assessing the risks associated with the early onset of young leaves. Large-scale mapping of forest phenological timing using Earth observation (EO) data could enhance our understanding of these processes through an added spatial component. However, translating traditional ground-based phenological observations into reliable ground truthing for training and validating EO mapping applications remains challenging. This study explored the feasibility of predicting high-resolution phenological phase data for European beech (Fagus sylvatica) using unoccupied aerial vehicle (UAV)-based multispectral indices and machine learning. Employing a comprehensive feature selection process, we identified the most effective sensors, vegetation indices, training data partitions, and machine learning models for phenological phase prediction. The model that performed best and generalized well across various sites utilized Green Chromatic Coordinate (GCC) and Generalized Additive Model (GAM) boosting. The GCC training data, derived from the radiometrically calibrated visual bands of a multispectral sensor, were predicted using uncalibrated RGB sensor data. The final GCC/GAM boosting model demonstrated capability in predicting phenological phases on unseen datasets within a root mean squared error threshold of 0.5. This research highlights the potential interoperability among common UAV-mounted sensors, particularly the utility of readily available, low-cost RGB sensors. However, considerable limitations were observed with indices that implement the near-infrared band due to oversaturation. Future work will focus on adapting models to better align with the ICP Forests phenological flushing stages.

Funder

Johann Heinrich von Thünen-Institut, Bundesforschungsinstitut für Ländliche Räume, Wald und Fischerei

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3