Entropy optimization and heat flux analysis of Maxwell nanofluid configurated by an exponentially stretching surface with velocity slip

Author:

Nasir Saleem,Berrouk Abdallah S.,Aamir Asim,Shah Zahir

Abstract

AbstractHybrid nanofluids are extremely important in field of engineering and technology due to their higher heat transportation performance resulting in increased heat transfer rates. In the presence of thermal heat flux, the effect of a slanted MHD with velocity slip condition on a CNTs hybrid nanocomposite across a gradually extending surface is investigated. In present analysis, Maxwell nanofluid is embedded with SWCNT and MWCNT (single and multiple wall carbon nanotubes) nanoparticles. The nanomaterials transformation framework is obtained by employing Xue modified theoretical model. Various factors like dissipation, thermal radiations and Ohmic heat influences are adequately implemented in heat formulation. The physical features of thermodynamical mechanism of irreversibility are explored. The thermodynamics second law is used to produce the entropy optimization formulation. In addition, entropy is utilized to assess the energy aspects of a heat exchanger. Utilizing appropriate parameters, the model nonlinear PDEs are transformed to ODEs. The HAM technique is used to compute the solution of nonlinear ODEs. For both types of CNTs, the variations of entropy rate, Bejan number, velocity and temperature field versus key technical parameters is analyzed. The Nu and Cf computational result for both CNTs are examined in tabulated and chart form. Velocity is inversely proportional to magnetic and solid volume nanoparticle parameters. The Br and Rd accelerates NG and Be for both nanocomposites. Additionally, a comparison of the HAM result and the numerical result is validated.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3