Novel biogenic silver nanoconjugates of Abrus precatorius seed extracts and their antiproliferative and antiangiogenic efficacies

Author:

Kaur Amritpal,Sharma Yash,Singh Gagandeep,Kumar Anoop,Kaushik Nutan,Khan Asim Ali,Bala Kumud

Abstract

AbstractBiogenic silver nanoconjugates (AgNCs), derived from medicinal plants, have been widely explored in the field of biomedicines. AgNCs for the first-time were synthesized using ethyl acetate seed extracts of Abrus precatorius and their antiproliferative and antiangiogenic efficacies were evaluated against cervical and oral carcinoma. Ultraviolet–Visible spectrophotometry, dynamic light Scattering (DLS), and scanning electron microscopy (SEM) were used for characterization of AgNCs. Antiproliferative activity was investigated using MTT, DNA fragmentation and in-vitro antioxidant enzyme activity assays. In-vivo chick chorioallantoic membrane (CAM) model was used to evaluate antiangiogenic activity. A total of 11 compounds were identified in both the extracts in GCMS analysis. The synthesized AgNCs were spherical shaped with an average size of 97.4 nm for AgAPE (Sox) and 64.3 nm for AgAPE (Mac). AgNCs possessed effective inhibition against Hep2C and KB cells. In Hep2C cells, AgAPE (Mac) revealed the highest SOD, catalase, GST activity and lower MDA content, whereas AgAPE (Sox) showed the highest GSH content. On the other hand, in KB cells, AgAPE (Sox) exhibited the higher SOD, GST activity, GSH content, and least MDA content, while AgAPE (Mac) displayed the highest levels of catalase activity. Docking analysis revealed maximum binding affinity of safrole and linoleic acid with selected targets. AgAPE (Sox), AgAPE (Mac) treatment profoundly reduced the thickness, branching, and sprouting of blood vessels in the chick embryos. This study indicates that A. precatorius-derived AgNCs have enhanced efficacies against cervical and oral carcinoma as well as against angiogenesis, potentially limiting tumour growth.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3