An evolutionary model of personality traits related to cooperative behavior using a large language model

Author:

Suzuki Reiji,Arita Takaya

Abstract

AbstractThis study aims to demonstrate that Large Language Models (LLMs) can empower research on the evolution of human behavior, based on evolutionary game theory, by using an evolutionary model positing that instructing LLMs with high-level psychological and cognitive character descriptions enables the simulation of human behavior choices in game-theoretical scenarios. As a first step towards this objective, this paper proposes an evolutionary model of personality traits related to cooperative behavior using a large language model. In the model, linguistic descriptions of personality traits related to cooperative behavior are used as genes. The deterministic strategies extracted from LLM that make behavioral decisions based on these personality traits are used as behavioral traits. The population is evolved according to selection based on average payoff and mutation of genes by asking LLM to slightly modify the parent gene toward cooperative or selfish. Through experiments and analyses, we clarify that such a model can indeed exhibit evolution of cooperative behavior based on the diverse and higher-order representation of personality traits. We also observed repeated intrusion of cooperative and selfish personality traits through changes in the expression of personality traits. The words that emerged in the evolved genes reflected the behavioral tendencies of their associated personalities in terms of semantics, thereby influencing individual behavior and, consequently, the evolutionary dynamics.

Funder

Japan Society for the Promotion of Science

Publisher

Springer Science and Business Media LLC

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3