Floating body effect in indium–gallium–zinc–oxide (IGZO) thin-film transistor (TFT)

Author:

Park Jingyu,Go Seungwon,Chae Woojun,Ryoo Chang Il,Kim Changwook,Noh Hyungju,Kim Seonggeun,Du Ahn Byung,Cho In-Tak,Yun Pil Sang,Bae Jong Uk,Park Yoo Seok,Kim Sangwan,Kim Dae Hwan

Abstract

AbstractIn this paper, the floating body effect (FBE) in indium-gallium-zinc-oxide (IGZO) thin-film transistor (TFT) and the mechanism of device failure caused by that are reported for the first time. If the toggle AC pulses are applied to the gate and drain simultaneously for the switching operation, the drain current of IGZO TFT increases dramatically and cannot show the on/off switching characteristics. This phenomenon was not reported before, and our study reveals that the main cause is the formation of a conductive path between the source and drain: short failure. It is attributed in part to the donor creation at the drain region during the high voltage (Vhigh) condition and in part to the donor creation at the source region during the falling edge and low voltage (Vlow) conditions. Donor creation is attributed to the peroxide formation in the IGZO layer induced by the electrons under the high lateral field. Because the donor creation features positive charges, it lowers the threshold voltage of IGZO TFT. In detail, during the Vhigh condition, the donor creation is generated by accumulated electrons with a high lateral field at the drain region. On the other hand, the floating electrons remaining at the short falling edge (i.e., FBE of the IGZO TFT) are affected by the high lateral field at the source region during the Vlow condition. As a result, the donor creation is generated at the source region. Therefore, the short failure occurs because the donor creations are generated and expanded to channel from the drain and source region as the AC stress accumulates. In summary, the FBE in IGZO TFT is reported, and its effect on the electrical characteristics of IGZO TFT (i.e., the short failure) is rigorously analyzed for the first time.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3