Listening to pulses of radiation: design of a submersible thermoacoustic sensor

Author:

Barmak Rafael,Cernicchiaro Geraldo

Abstract

AbstractNowadays, various collaborations are creating immense machines to try to track and understand the origin of high-energy cosmic particles (e.g., IceCube, ANTARES, Baikal-GVD, P-ONE). The detection mechanism of these sophisticated experiments relies mainly on an optical signal generated by the passage of charged particles on a dielectric medium (Čerenkov radiation). Unfortunately, the dim light produced by passing particles cannot travel too far until it fades away, creating the necessity to instrument large areas with short spacing between sensors. The range limitation of the optical technique has created a fertile ground for experimenting on the detection of acoustic signals generated by radiation—thermoacoustics. Despite the increased use of the thermoacoustic technique, the instrumentation to capture the faint acoustic signals is still scarce. Therefore, this work has the objective to contribute with information on the critical stages of an affordable submersible thermoacoustic sensor: namely the piezoelectric transducer and the amplifying electronics. We tested the sensor in a $$170\,{\textit{l}}$$170l non-anechoic tank using an infrared ($$\lambda =1064\,\hbox {nm}$$λ=1064nm) Q-switched Nd:YAG laser as a pulsed energy source to create the characteristic signals of the thermoacoustic phenomena. In accordance with the thermoacoustic model, a polarity inversion of the pressure signal was observed when transiting from temperatures below the point of maximum density of water to temperatures above it. Also, the amplitude of the acoustic signal displayed a linear relationship with pulse energies up to $$(51.1 \pm 1.7)\,\hbox {mJ}$$(51.1±1.7)mJ ($$R^2 \sim 0.98$$R20.98). Despite the use of cost-effective parts and simple construction methods, the proposed sensor design is a viable instrument for experimental thermoacoustic investigations on high-energy particles.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3