Mechanism of salidroside in the treatment of endometrial cancer based on network pharmacology and molecular docking

Author:

Yang Panpan,Chai Yihong,Wei Min,Ge Yan,Xu Feixue

Abstract

AbstractSalidroside is a natural product of phenols, which has a wide scape of pharmacological effects, but its pharmacological effects and molecular mechanism on endometrial cancer are not clear. To systematically explore the pharmacological effects and molecular mechanisms of salidroside on endometrial cancer through the method of network pharmacology. The possible target genes of salidroside were obtained through different pharmacological databases and analysis platforms, and then the relevant target genes of endometrial cancer were obtained through the GeneCards website, and the target genes were uniformly converted into standardized gene names with Uniprot. The collected data were then processed to obtain common target genes and further analyzed through the String website to construct a protein–protein interaction (PPI) network, followed by gene ontology (GO) functional annotation and Kyoto Gene and Genome Encyclopedia (KEGG) pathway analysis. We further interpreted the molecular mechanism of salidroside for the treatment of endometrial cancer by constructing a “drug component–target gene–disease” network. Finally, we performed molecular docking to validate the binding conformation between salidroside and the candidate target genes. There were 175 target genes of salidroside after normalization, among which 113 target genes interacted with endometrial cancer. GO analysis indicated that the anti-endometrial cancer effect of salidroside may be strongly related to biological processes such as apoptosis and response to drug. KEGG analysis indicated that its mechanism may be related to pathway in cancer and PI3K-AKT signaling pathway. Molecular docking showed that salidroside had high affinity with five key genes. Based on the novel network pharmacology and molecular docking validation research methods, we have revealed for the first time the potential mechanism of salidroside in the therapy of endometrial cancer.

Funder

The First Hospital of Lanzhou University Youth Fund

Gansu Provincial Youth Science Foundation

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3