Author:
Iravani Behzad,Peter Moa G.,Arshamian Artin,Olsson Mats J.,Hummel Thomas,Kitzler Hagen H.,Lundström Johan N.
Abstract
AbstractRemoving function from a developed and functional sensory system is known to alter both cerebral morphology and functional connections. To date, a majority of studies assessing sensory-dependent plasticity have focused on effects from either early onset or long-term sensory loss and little is known how the recent sensory loss affects the human brain. With the aim of determining how recent sensory loss affects cerebral morphology and functional connectivity, we assessed differences between individuals with acquired olfactory loss (duration 7–36 months) and matched healthy controls in their grey matter volume, using multivariate pattern analyses, and functional connectivity, using dynamic connectivity analyses, within and from the olfactory cortex. Our results demonstrate that acquired olfactory loss is associated with altered grey matter volume in, among others, posterior piriform cortex, a core olfactory processing area, as well as the inferior frontal gyrus and angular gyrus. In addition, compared to controls, individuals with acquired anosmia displayed significantly stronger dynamic functional connectivity from the posterior piriform cortex to, among others, the angular gyrus, a known multisensory integration area. When assessing differences in dynamic functional connectivity from the angular gyrus, individuals with acquired anosmia had stronger connectivity from the angular gyrus to areas primary responsible for basic visual processing. These results demonstrate that recently acquired sensory loss is associated with both changed cerebral morphology within core olfactory areas and increase dynamic functional connectivity from olfactory cortex to cerebral areas processing multisensory integration.
Funder
Vetenskapsrådet
Knut och Alice Wallenbergs Stiftelse
Karolinska Institute
Publisher
Springer Science and Business Media LLC
Reference94 articles.
1. Frasnelli, J., Collignon, O., Voss, P. & Lepore, F. Crossmodal plasticity in sensory loss. Prog. Brain Res. 191, 233–249 (2011).
2. Röder, B., & Rösler, F. Compensatory Plasticity as a Consequence of Sensory Loss. In The handbook of multisensory processes, (Eds Calvert, G. A. et al.), 719–747 (MIT Press, 2004).
3. Fine, I. & Park, J.-M. Blindness and human brain plasticity. Annu. Rev. Vis. Sci. 4, 337–356 (2018).
4. Frasnelli, J., Fark, T., Lehmann, J., Gerber, J. & Hummel, T. Brain structure is changed in congenital anosmia. Neuroimage 83, 1074–1080 (2013).
5. Reichert, J. L. & Schöpf, V. Olfactory loss and regain: Lessons for neuroplasticity. Neuroscientist 24, 22–35 (2018).
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献