METTL5 serves as a diagnostic and prognostic biomarker in hepatocellular carcinoma by influencing the immune microenvironment

Author:

Wang Lei,Peng Jin-lin

Abstract

AbstractDespite the abnormal expression of 18S rRNA m6A methyltransferase METTL5 being reported in some types of human malignancies, but its effect on hepatocellular carcinoma (HCC) remains to be unclear. This study aims to elucidate the influences of METTL5 on the carcinogenesis and progression of HCC. Expressions of METTL5 gene, transcript, protein, and promoter methylation in HCC were examined through multiple databases, c-BioPortal was used to confirm the genomic alterations of METTL5, the biological functions, target networks of kinases and microRNAs of METTL5, and its interactive differential genes were investigated through LinkedOmics. The possible correlation of METTL5 with the tumor-related infiltration of immune cells for HCC were explored comprehensively by using the online tools of TIMER and TISIDB. Expressions of METTL5 gene, mRNA, and protein were considerably overexpressed in HCC samples in comparison with healthy samples. The high methylation of the METTL5 promoter was observed in HCC tissues. Elevated METTL5 expression exhibited unfavorable survival outcomes in HCC patients. METTL5 expression were enriched in the signaling pathways of ribosome and oxidative phosphorylation, mismatch repair, and spliceosome through the involvement of several cancer-related kinases and miRNAs. The METTL5 expression has a positive correlation with the infiltration degree of B cells, CD8+ T cells, CD4+ T cells, macrophages, neutrophils, and dendritic cells in HCC. Marker genes of tumor immune-infiltrated cells have strong connection with METTL5. Furthermore, the upregulation of METTL5 was strongly correlated with the immune regulation of immunomodulators, chemokines, and chemokine receptors in the immune microenvironment. The oncogenesis and development of HCC are closely related to METTL5 expression, and the overexpression of METTL5 resulted in the poor survival outcome of HCC patients by regulating tumor immune microenvironment.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3