Unraveling the influence of TiO2 nanoparticles on growth, physiological and phytochemical characteristics of Mentha piperita L. in cadmium-contaminated soil

Author:

Mohammadi Hamid,Kazemi Zahra,Aghaee Ahmad,Hazrati Saeid,Golzari Dehno Rosa,Ghorbanpour Mansour

Abstract

AbstractAmong the metals contaminants, cadmium (Cd) is one of the most toxic elements in cultivated soils, causing loss of yield and productivity in plants. Recently, nanomaterials have been shown to mitigate the negative consequences of environmental stresses in different plants. However, little is known about foliar application of titanium dioxide nanoparticles (TiO2 NPs) to alleviate Cd stress in medicinal plants, and their dual interactions on essential oil production. The objective of this study was to investigate the effects of foliar-applied TiO2 NPs on growth, Cd uptake, chlorophyll fluorescence, photosynthetic pigments, malondialdehyde (MDA) and hydrogen peroxide (H2O2) contents, total phenols, anthocyanins, flavonoids, antioxidant enzymes (SOD, CAT and POD) activity and essential oil content of Mentha piperita L. (peppermint) under Cd stress. For this purpose, plants were grown in Cd-contaminated (0, 20, 40, and 60 mg L−1) soil, and different concentrations of TiO2 NPs (0, 75, and 150 mg L−1) were foliar sprayed at three times after full establishment until the beginning of flowering. Exposure to TiO2 NPs significantly (P < 0.01) increased shoot dry weight (37.8%) and the number of lateral branches (59.4%) and decreased Cd uptake in plant tissues as compared to the control. Application of TiO2 NPs increased the content of plastid pigments, and the ratio Fv/Fm (13.4%) as compared to the control. Additionally, TiO2 NPs reduced the stress markers, MDA and H2O2 contents and enhanced the activity of the phenylalanine ammonia-lyase (PAL) enzyme (60.5%), total phenols (56.1%), anthocyanins (42.6%), flavonoids (25.5%), and essential oil content (52.3%) in Cd-stressed peppermint compared to the control. The results also demonstrated that foliar spray of TiO2 NPs effectively improved the growth and chlorophyll fluorescence parameters and reduced Cd accumulation in peppermint, which was mainly attributed to the reduction of oxidative burst and enhancement of the enzymatic (SOD, CAT, and POD) antioxidant defense system due to the uptake of NPs. The findings provide insights into the regulatory mechanism of TiO2 NPs on peppermint plants growth, physiology and secondary metabolites production in Cd-contaminated soil.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3