Effects of cancer-associated point mutations on the structure, function, and stability of isocitrate dehydrogenase 2

Author:

Chen Xiang,Yang Peipei,Qiao Yue,Ye Fei,Wang Zhipeng,Xu Mengting,Han Xiaowang,Song Li,Wu Yuehong,Ou Wen-Bin

Abstract

AbstractMutations in isocitrate dehydrogenase (IDH) are frequently found in low-grade gliomas, secondary glioblastoma, chondrosarcoma, acute myeloid leukemias, and intrahepatic cholangiocarcinoma. However, the molecular mechanisms of how IDH2 mutations induce carcinogenesis remain unclear. Using overlapping PCR, transfection, immunoblotting, immunoprecipitation, measurements of enzyme activity, glucose, lactic acid, ATP, and reactive oxygen species (ROS), cell viability, protein degradation assays post-inhibition of the 26S proteasome (bortezomib) or HSP90 (17-AAG), and a homology model, we demonstrated that the properties of ten cancer-associated IDH2 variants (R140G/Q/W and R172S/K/M/W/G/C/P) arising from point mutations are closely related to their structure and stability. Compared with wild-type IDH2, the R172 and R140 point mutations resulted in a decrease in IDH2 activity, ROS, and lactate levels and an increase in glucose and ATP levels under normal and hypoxic conditions, indicating that mutant IDH2 increases cell dependency on mitochondrial oxidative phosphorylation, and reduces glycolysis under hypoxia. Overexpression of most of IDH2 point mutants showed anti-proliferative effects in the 293T and BV2 cell lines by inhibition of PI3K/AKT signaling and cyclin D1 expression and/or induced the expression of TNF-α and IL-6. Furthermore, bortezomib treatment resulted in dramatic degradation of IDH2 mutants, including R140G, R140Q, R140W, R172S and R172K, whereas it had little impact on the expression of WT and other mutants (R172M, R172W, R172G, R172C and R172P). In addition, targeting HSP90 minimally affected the expression of mutated IDH2 due to a lack of interaction between HSP90 and IDH2. The homology model further revealed that changes in conformation and IDH2 protein stability appeared to be associated with these point mutations. Taken together, our findings provide information important for understanding the molecular mechanisms of IDH2 mutations in tumors.

Funder

Open Funds of State Key Laboratory of Oncology in South China

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3