Author:
Mencel Joanna,Marusiak Jarosław,Jaskólska Anna,Kamiński Łukasz,Kurzyński Marek,Wołczowski Andrzej,Jaskólski Artur,Kisiel-Sajewicz Katarzyna
Abstract
AbstractThe study aimed to determine whether four weeks of motor imagery training (MIT) of goal-directed reaching (reaching to grasp task) would affect the cortical activity during motor imagery of reaching (MIR) and grasping (MIG) in the same way. We examined cortical activity regarding event-related potentials (ERPs) in healthy young participants. Our study also evaluated the subjective vividness of the imagery. Furthermore, we aimed to determine the relationship between the subjective assessment of motor imagery (MI) ability to reach and grasp and the cortical activity during those tasks before and after training to understand the underlying neuroplasticity mechanisms. Twenty-seven volunteers participated in MIT of goal-directed reaching and two measurement sessions before and after MIT. During the sessions 128-channel electroencephalography (EEG) was recorded during MIR and MIG. Also, participants assessed the vividness of the MI tasks using a visual analog scale (VAS). The vividness of imagination improved significantly (P < .05) after MIT. A repeated measures ANOVA showed that the task (MIR/MIG) and the location of electrodes had a significant effect on the ERP's amplitude (P < .05). The interaction between the task, location, and session (before/after MIT) also had a significant effect on the ERP's amplitude (P < .05). Finally, the location of electrodes and the interaction between location and session had a significant effect on the ERP's latency (P < .05). We found that MIT influenced the EEG signal associated with reaching differently than grasping. The effect was more pronounced for MIR than for MIG. Correlation analysis showed that changes in the assessed parameters due to MIT reduced the relationship between the subjective evaluation of imagining and the EEG signal. This finding means that the subjective evaluation of imagining cannot be a simple, functional insight into the bioelectrical activity of the cerebral cortex expressed by the ERPs in mental training. The changes we noted in ERPs after MIT may benefit the use of non-invasive EEG in the brain-computer interface (BCI) context.Trial registration: NCT04048083.
Funder
National Science Centre of the Republic of Poland
Publisher
Springer Science and Business Media LLC
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献