Radiation dose-rate is a neglected critical parameter in dose–response of insects

Author:

Yamada Hanano,Dias Vanessa S.,Parker Andrew G.,Maiga Hamidou,Kraupa Carina,Vreysen Marc J. B.,Mamai Wadaka,Schetelig Marc F.,Somda Nanwintoum S. Bimbilé,Bouyer Jeremy

Abstract

AbstractReproductive sterility is the basis of the sterile insect technique (SIT) and essential for its success in the field. Numerous factors that influence dose–response in insects have been identified. However, historically the radiation dose administered has been considered a constant. Efforts aiming to standardize protocols for mosquito irradiation found that, despite carefully controlling many variable factors, there was still an unknown element responsible for differences in expected sterility levels of insects irradiated with the same dose and handling protocols. Thus, together with previous inconclusive investigations, the question arose whether dose really equals dose in terms of biological response, no matter the rate at which the dose is administered. Interestingly, the dose rate effects studied in human nuclear medicine indicated that dose rate could alter dose–response in mammalian cells. Here, we conducted experiments to better understand the interaction of dose and dose rate to assess the effects in irradiated mosquitoes. Our findings suggest that not only does dose rate alter irradiation-induced effects, but that the interaction is not linear and may change with dose. We speculate that the recombination of reactive oxygen species (ROS) in treatments with moderate to high dose rates might minimize indirect radiation-induced effects in mosquitoes and decrease sterility levels, unless dose along with its direct effects is increased. Together with further studies to identify an optimum match of dose and dose rate, these results could assist in the development of improved methods for the production of high-quality sterile mosquitoes to enhance the efficiency of SIT programs.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference55 articles.

1. Dyck, V. A., Hendrichs, J. P. & Robinson, A. S. The sterile insect technique: Principles and practice in area-wide integrated pest management (Springer, 2005).

2. Klassen, W. & Curtis, C. F. History of the sterile insect technique. In The Sterile Insect Technique: Principles and Practice in Area-Wide Integrated Pest Management (eds Dyck, V. A. et al.) 1–34 (Springer, 2005).

3. Bouyer, J., Yamada, H., Pereira, R., Bourtzis, K. & Vreysen, M. J. B. Phased conditional approach for mosquito management using sterile insect technique. Trends Parasitol. 36, 325–336. https://doi.org/10.1016/j.pt.2020.01.004 (2020).

4. WHO and IAEA. TDR | Guidance framework for testing the sterile insect technique as a vector control tool against Aedes-borne diseases. In: WHO [Internet]. 2020. Available: https://www.who.int/publications/i/item/9789240002371.

5. Collins, S. R., Weldon, C. W., Banos, C. & Taylor, P. W. Effects of irradiation dose rate on quality and sterility of Queensland fruit flies, Bactrocera tryoni (Froggatt). JApplEntomol. 132, 398–405 (2008).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3